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c Laboratoire Mathématiques et Applications de Valenciennes, FR CNRS 2956, Université de Valenciennes et du Hainaut-Cambrésis,

Le Mont Houy, F-59313 Valenciennes cedex 09, France

Received 17 July 2007; received in revised form 6 December 2007; accepted 12 January 2008
Available online 26 January 2008
Abstract

This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier–Stokes
system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equa-
tion and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough
relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In
turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show
the scheme capabilities. In particular, the viscous Rayleigh–Taylor instability evolution is carefully investigated.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to the numerical simulation of the variable density incompressible Navier–Stokes
system given on a domain X � RN by:
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otðquÞ þDivxðqu� uÞ þ $xp � lDxu ¼ f; ð2Þ
divxu ¼ 0: ð3Þ
Here qðt; xÞP 0 stands for the density of a viscous fluid whose velocity field is uðt; xÞ 2 RN . The description
of the external force is embodied into the right hand side fðt; xÞ of (2) and l > 0 is the viscosity of the fluid.
The unknowns depend on time t P 0 and position x 2 X � RN . Given vector fields u and v we set
divxðuÞ ¼

PN
i¼1oxi ui, and u� v is the N � N matrix with components uivj; given a matrix valued function A

we denote DivxA the vector having components
PN

j¼1oxj Aij. The third unknown of the problem is the pressure
pðt; xÞ 2 R; it can be seen as a Lagrange multiplier associated to the incompressibility constraint (3).The prob-
lem is completed by initial and boundary conditions, to which we shall go back later on.

Neglecting any technical difficulties, the system can be rewritten in many different ways, that have each their
own interest both on theoretical or numerical viewpoint. To start with, using (3), the mass conservation rela-
tion (1) can be recast as
otqþ u � $xq ¼ 0: ð4Þ

Accordingly the density remains constant along the characteristic curves associated to the velocity field u,

and therefore, if the density is initially homogeneous qðt ¼ 0; xÞ ¼ �q > 0, then it remains constant for any
positive time: qðt; xÞ ¼ �q. In this very specific situation the problem reduces to
otuþ ðu � $xÞuþ 1
�q $xp � l

�q Dxu ¼ 1
�q f;

divxu ¼ 0;

�
ð5Þ
where we have used (3) to develop Divxðu� uÞ ¼ ðu � $xÞu. The homogeneous Navier–Stokes system (5) has
motivated a lot of work since the seminal results of Leray [30]; we refer, e.g. to the treatise [48] and for numer-
ical methods to [24]; a survey of recent theoretical developments can be found in [11]. However, many appli-
cations require to deal with inhomogeneous flows, and to consider the full system (1)–(3). We just keep in
mind that a basic requirement for any scheme dealing with the variable density case is to be able to recover
results known for the homogeneous situation.

In the variable density case, the momentum Eq. (2) can also be written in many different ways. As said
above, by using (1) we obtain
qðotuþ ðu � $xÞuÞ þ $xp � lDxu ¼ f; ð6Þ

but considering now possibly space varying density. A useful trick consists in writing alternatively
otð
ffiffiffi
q
p

uÞ þDivxð
ffiffiffi
q
p

u� uÞ þ 1ffiffiffi
q
p rxp � lffiffiffi

q
p Dxu ¼ fffiffiffi

q
p : ð7Þ
This formulation – which is used in [32] and for numerical purposes in [23] – is very convenient since it
makes naturally appear the kinetic energy of the fluid which is the L2 norm of the quantity

ffiffiffi
q
p

u. Finally,
we can also express the divergence free condition (3) as a Poisson equation, with variable coefficients, for
the pressure
divx

1

q
$xp

� �
¼ divx

f

q
� ðu � $xÞuþ

l
q

Dxu

� �
: ð8Þ
Combined with a discussion of the boundary condition for the pressure p, this formulation is the basis of
the numerical scheme used in [29].

For details on existence results for the non-homogeneous incompressible Navier–Stokes system we refer to
[32,3,13,28]. Let us now make a brief overview of the numerical methods used to deal with (1)–(3). The prob-
lem combines the difficulty of the transport Eq. (1) with the difficulty of guaranteeing the divergence free con-
straint (3) in the evolution of the velocity (2). A first possible strategy adopts in some sense a compressible and
hyperbolic viewpoint: the viscous term is seen as a correction, that certainly helps, and the method relies on
transport characteristic based schemes for the unknowns ðq; uÞ which are advected by the same velocity field u.
Then, the divergence free constraint can be treated by using a projection step [1] or a fictitious time, see [45,25].
We also refer to [44,42,43]. The second viewpoint, which is closer to the strategy we adopt, is more based on an
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incompressible philosophy and exploits the viscous term in (2). This leads to use modern finite elements (FE)
methods, see [18]. The method uses a time splitting, solving separately the transport equation for the density
(1) and the momentum Eq. (2), the constraint (3) being treated through a projection method, see [21]. This is
the methodology followed in [23,20]. These contributions use the formulation (7) since a specific care is given
to the kinetic energy relation. The (unconditional) stability of the scheme however requires two projection
steps, which is time consuming since one has to solve elliptic equation with variable coefficients (both in time
and space). The method has been improved in [39] by getting rid of one projection step. Note also that [39]
found some advantage in coming back to the formulation (6). Of course, a difficulty arises with the transport
Eq. (1) which, being of hyperbolic nature, is not well adapted to a mere treatment by FE methods, but instead
requires a specific approach, like Discontinuous Galerkin methods, artificial viscosity, sub-grid stabilization
procedure as in [23], see also [27], or the least-square method as used in [39]. Finally, it is worth mentioning
[29] which designs a finite difference scheme for solving the system (4), (6) and (8), completed by a deep dis-
cussion of the boundary condition to be used for the pressure. The transport equation is then evaluated by
means of a shock capturing method involving slope limiters.

The originality of our work is to use different numerical methods for the transport Eq. (1) and for evalu-
ating the evolution of the velocity driven by (2) and (3). To be more specific, we use a time-splitting, solving (1)
for a given velocity by using a finite volume (FV) approach which is efficient when dealing with a pure con-
vection equation, see [31,19] and then, we compute the divergence free solution of (6) by exploiting the advan-
tages of FE methods, see [48,24,18]. However, the difficulty relies on the compatibility of the two approaches.
This question has been addressed for different purposes in [38,22]. Here, we care to preserve the divergence free
constraint between the two steps of the splitting. Indeed, for any node A, the FE computation gives a u which
satisfies
Z

X
divxu wA dx ¼ 0
where wA is the FE basis function associated to the node A. Then, from this quantity we are left with the task
of defining some uH on the interface oCA of the control volume CA associated to the node A in the FV method
so that
Z

oCA

uH � ndcðxÞ ¼ 0;
with n the outward normal to CA. A naive choice would not satisfy this constraint and as a consequence is not
able to give a correct solution in the purely homogeneous case (5): since the divergence free condition is not
numerically fulfilled (1) and (4) are not equivalent and spurious space variation of the density appears. In what
follows we shall use a FE method based on the Uzawa algorithm for the momentum equation, with P2=P1

elements. However, we point out that this choice is not crucial and any efficient incompressible method can
be used as well, for instance using projection steps as in [23], see also [21], or using a different family of
FE. We also warn the reader that many technical choices made below are dictated by the fact that we have
in mind to adapt our method to deal with Low Mach number models, as arising in combustion problems,
where the divergence free condition is replaced by a relation between divxu and non-linear derivatives of
the density, see [33] and the numerical investigation in [50,26]. Such problems will be discussed elsewhere
[8]. There are many advantages in using such an hybrid FV/FE approach. First of all, we can develop inde-
pendently performing methods well suited to both Eqs. (1) and (6), (3). For instance shock capturing methods
and slope limiters can be incorporated easily in the evaluation of the density and many different FE can be
used for the velocity. Second of all, the method is very flexible and allows easily the use of unstructured meshes
through the design of suitable compatibility conditions. This aspect is discussed in detail in Section 2.4. Def-
initely, this is a strong motivation for this work. Note also that the method might be advantageously combined
with mesh refinements strategies.

The paper is organized as follows. In Section 2 we describe the scheme: we start with a detailed presentation
of the method used in each step of the splitting and then we discuss precisely the compatibility conditions.
Section 3 is devoted to numerical results: having validated the scheme and discussed experimentally rates
of convergence, we offer some examples of non-homogeneous flows.
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2. Description of the numerical scheme

The complete mathematical statement of the problem (1)–(6)–(3) requires suitable boundary and initial
conditions. Let X be an open bounded set of RN , with a locally Lipschitz boundary oX; nðxÞ denote the outer
unit normal vector at x 2 oX. The Navier–Stokes system is completed by imposing
ujoX
¼ g; ujt¼0

¼ u0;

qjCinc
¼ qinc; qjt¼0

¼ q0;

(

where g and qinc > 0 are, respectively, the velocity and the density prescribed on the boundary, whereas u0 and
q0 are the initial velocity and density. According to the hyperbolic character of the mass conservation Eq. (1),
we write
Cinc ¼ fx 2 oX j gðxÞ � nðxÞ < 0g:

As for the homogeneous Navier–Stokes problem, neither a boundary condition nor an initial condition is

required for the pressure. Finally, the problem is well posed when the following compatibility conditions are
satisfied
Z

oX
g � ndcðxÞ ¼ 0 8t P 0 and divxu0 ¼ 0:
It is classical that the boundary condition can be transformed into a forcing term so that, without loss of
generality, we assume in what follows g ¼ 0.

In the literature, FV schemes are widely used in the numerical solution of conservation laws such as (1),
[31,19]. FE approximations are naturally well suited to elliptic or parabolic, i.e. diffusive problems such as
(6)–(3) [2,18]. The idea of combining FE methods and FV methods in computational fluid dynamics was used
in [37,38] (see also the reference therein) in order to approximate the solution of convection–diffusion equa-
tions. Their aim was to introduce several footbridges between FV and FE for coupling the discretizations
of convective and diffusive terms of a system of conservation laws.

In order to couple the advantages of FV method for the transport equation satisfied by the density and FE
method for evaluating the evolution of the velocity and pressure, we consider the time splitting of the Cauchy
problem described below. To be more specific, from now on we restrict ourselves to the two-dimensional
framework: N ¼ 2.

2.1. The time splitting

Let us denote Dt the time step and tn ¼ nDt, n P 0. Let us assume that the numerical solution at time tn,
namely (qn; un; pn), is known on the computational domain. The time splitting of the system (1)–(6)–(3) is
known as the ‘‘Strang splitting” [46]:

(1) The new density field, qnþ1, is computed by solving on the time interval ðnDt; ðnþ 1ÞDtÞ the transport
equation
otq
nþ1 þ divxðqnþ1unÞ ¼ 0; ð9Þ
with suitable boundary conditions on qnþ1. Details of the method we use are given in Section 2.3.

(2) The new velocity and pressure fields, unþ1 and pnþ1, are computed by the resolution on the time interval
ðnDt; ðnþ 1ÞDtÞ of the system
qnþ1ðotu
nþ1 þ unþ1 � rxunþ1Þ þ $xpnþ1 � lDxunþ1 ¼ fnþ1; ð10Þ

divxunþ1 ¼ 0; ð11Þ

completed by the specification of boundary conditions on unþ1. Details of the method we use are given in
Section 2.2.
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(3) The following velocity and pressure fields, unþ2 and pnþ2, are computed by the resolution on the time
interval ððnþ 1ÞDt; ðnþ 2ÞDtÞ of the system
qnþ1ðotu
nþ2 þ unþ2 � rxunþ2Þ þ $xpnþ2 � lDxunþ2 ¼ fnþ2; ð12Þ

divxunþ2 ¼ 0; ð13Þ

completed by the specification of boundary conditions on unþ2.

(4) Finally, the new density field, qnþ2, is computed by solving on the time interval ððnþ 1ÞDt; ðnþ 2ÞDtÞ the
transport equation
otq
nþ2 þ divxðqnþ2unþ2Þ ¼ 0; ð14Þ
with suitable boundary conditions on qnþ2.
Then we go back to the first step (using nþ 2 instead of n) to compute the solution at the following time

steps.

2.2. Solving the velocity equation by a FE method

In the numerical simulation of the Navier–Stokes Eq. (10), a major difficulty is that the velocity and the pres-
sure are coupled by the incompressibility constraint (11). From the seminal works of Chorin and Temam [47,12],
the interest in using projection methods is that, at each time step, one only needs to solve a sequence of decoupled
elliptic equations for the velocity and the pressure. One can see [21] and references therein for an overview of
projection methods for incompressible flows. Here, we shall use instead the Uzawa algorithm which is based
on a saddle-point interpretation of the problem, see [48,51]. In a future work, our goal is to generalize the present
scheme to low Mach number models [8], where the constraint (3) will be replaced by
divxu ¼ DxF ðqÞ; ð15Þ

for a certain function F : R! R. The classical Uzawa algorithm is still well adapted to treat such a situation.
Indeed, when the homogeneous, or non-homogeneous, Navier–Stokes equations are discretized by a FE meth-
od, the resulting saddle-point problem can be put into the framework of an optimization problem and can be
solved with general methods of descent as Uzawa’s algorithm, penalty method, augmented Lagrangian algo-
rithm (see [2]) or stabilized saddle-point problem (see [9] and reference therein).

Since we aim at using a FE method, it is convenient to write the variational formulation of (10) and (11). As
usual we denote by L2

0ðXÞ the space of square integrable functions having a vanishing mean over X. Let q P 0
be a given function defined on X, say q 2 L1 \ L1ðXÞ. We aim at solving
Find ðu; pÞ 2 ðH 1
0ðXÞÞ

2 � L2
0ðXÞ such that for any ðv; qÞ 2 ðH 1

0ðXÞÞ
2 � L2

0ðXÞ
ðqotu; vÞ þ bðqu; u; vÞ þ aðu; vÞ þ dðv; pÞ ¼ ðf; vÞ;
dðu; qÞ ¼ 0;

8><>: ð16Þ
on the time step ðnDt; ðnþ 1ÞDtÞ, with data ujt¼nDt ¼ un. Here, ð�; �Þ is the usual L2ðXÞ (or ðL2ðXÞÞ2) inner prod-
uct, að�; �Þ and dð�; �Þ are the bilinear forms defined by:
aðu; vÞ ¼ lðrxu;rxvÞ; u; v 2 ðH 1
0ðXÞÞ

2
;

dðv; pÞ ¼ �ðp; divxvÞ; v 2 ðH 1
0ðXÞÞ

2
; p 2 L2

0ðXÞ;
and bð�; �; �Þ is the trilinear form defined by
bðu; v;wÞ ¼ ððu � rxÞv;wÞ; u; v;w 2 ðH 1
0ðXÞÞ

2
:

Of course, að�; �Þ is elliptic on ðH 1
0ðXÞÞ

2 and dð�; �Þ satisfies the Babuska-Brezzi ‘‘inf-sup” condition on
ðH 1

0ðXÞÞ
2 � L2

0ðXÞ. Now let us discuss the discrete version of (16).
The domain X is approximated by a computational domain Xh, discretized by a conforming and isotropic set

of triangles T h, with mesh-size h. Let us introduce FE spaces V h � ðH 1
0ðXhÞÞ2 for the velocity uh and Qh � L2

0ðXhÞ
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for the pressure ph. It is well know that, when choosing a pair of FE spaces V h, Qh to discretize the velocity and
the pressure, it is necessary to check the Babuska-Brezzi ‘‘inf-sup” condition. We define
V h ¼ fvh 2 C0ð�XhÞ j vhjK 2 Q2ðKÞ 8K 2 T h and vhjoXh
¼ 0g;

Qh ¼ fqh 2 C0ð�XhÞ j qhjK 2 PðKÞ 8K 2 T hg;
where for all K 2 T h;PðKÞ and QðKÞ are spaces of polynomials with degree p and q, respectively. For our
simulations, we choose PðKÞ ¼ P1ðKÞ and QðKÞ ¼ P2ðKÞ. Among the possible choices, we have eliminated
elements when the pressure is piecewise constant. Indeed, it seems that such discretizations produce oscilla-
tions when highly non-stationary flows are computed [7]. Another possibility is the so-called mini-element
(or P1 � P1 bubble), which can be seen as a stabilized P1 � P1 FE [9]. This choice produces a lower approx-
imation of the velocity field but it reduces the number of degrees of freedom in comparison to stable discret-
izations, which will be essential for 3D problems. The non-conforming FE for the pressure are also possible, in
particularly when the domain Xh is not convex.

Now, we also need to define a suitable discrete approximation of the (given) function q, compatible with the
discretization of the velocity and the pressure. This means that we need a finite dimensional space Y h, based on
piecewise polynomial functions, and qh 2 Y h approximating q. Since the formulation (16) does not involve
more regularity assumption on q than on the pressure p, a natural choice is merely Y h ¼ Qh. Moreover, if
we consider a piecewise constant density, we cannot extend the present work to the modified incompressible
Eq. (15). We keep in mind that actually q comes from a FV approximation of the density and it is therefore
defined on control volumes associated to a dual mesh. We shall detail in Section 2.4 below the construction of
the approximation belonging to the FE space.

Let us conclude with a few words about the time discretization of (16). We shall use a semi-implicit scheme
to treat the non-linear convection term, as a result of a linearization step in the momentum Eq. (6). This
scheme, already used in [23], has second-order accuracy in time. Precisely, given the approximations
un; un�1 and q� ¼ qnþ1 (resp. q� ¼ qn) in the second (resp. third) step of the Strang splitting, at time tnþ1 we
compute ðunþ1; pnþ1Þ by solving
q�
3unþ1 � 4un þ un�1

2Dt
þ ð�unþ1 � rxÞunþ1

� �
� lDxunþ1 þrxpnþ1 ¼ fnþ1; ð17Þ

divxunþ1 ¼ 0: ð18Þ
Here, �unþ1 ¼ 2un � un�1 is the linear second-order extrapolation of the velocity field at the new time tnþ1.
Obviously, other schemes can also be considered, in which the non-linear term ðu � rxÞu can appear as a forc-
ing term, if it is treated in a fully explicit way.

2.3. Solving the density equation by a FV method

Let u be a given velocity field defined on X, with u 2 ðH 1
0ðXÞÞ

2. We aim at solving the transport equation
otqþ divxðquÞ ¼ 0
on the time step ðnDt; ðnþ 1ÞDtÞ, with data qjt¼nDt ¼ qn. The computation of the solution is performed using a
usual vertex-based FV scheme. Without loss of generality, let us describe how the value of qA is obtained,
where A is an internal node of the triangulation, see Fig. 1.

2.3.1. Mesh definitions

Let us suppose that A is the common vertex of nt triangles (see Fig. 1 for the case nt ¼ 5). Here A is an internal
point which means A belongs to X and we shall detail the case of a point of the boundary in a specific section later
on. We denote Ai the neighboring nodes of A, enumerated counterclockwise and Mi the triangle
ðA;Ai;Aiþ1Þ; 1 6 i 6 nt. We also denote Ai;iþ1 the middle of ½AiAiþ1�;A0i the middle of ½AAi� and A0i;iþ1 the isobary-
center of fA;Ai;Aiþ1gð1 6 i 6 ntÞ. By convention, an index value i must be understood as ði mod ntÞ (for exam-
ple, Antþ1 is the same as A1 or Ant;ntþ1 is the same as Ant;1), and the indices can commute (for example, Ant;1 is the
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same as A1;nt). We define the vertex-based control volume CA associated to the node A, by joining all the nodes A0i
and A0i;iþ1 for 1 6 i 6 nt (see Fig. 1). The boundary oCA of CA splits in several parts C�i and Cþi , where
C�i ¼ ½A0i�1;iA

0
i� and Cþi ¼ ½A0iA0i;iþ1� (2 6 i 6 nt þ 1). The approximated density qA is built as a constant function

on CA. Let us remark that the cell-vertex choice of the FV method (instead of the cell-center one) allows to write a
P1 Lagrange interpolation of the density if needed, by using this constant value qA on CA as the value of q at node
A (see Section 2.4). Let jCAj stand for the area of CA, jMij for the area of Mi, and jC�i j (resp. jCþi j) is the length of
C�i (resp. Cþi ). Finally, n�i (resp. nþi ) is the unit outward normal to CA along C�i (resp. Cþi ). The coordinates of A

are denoted ðx; yÞ and the coordinates of Ai are denoted ðxi; yiÞ, 1 6 i 6 nt. For a given function f : X! R, the
shorthand notations f, fi, f 0i , fi;j and f 0i;j stand for f ðAÞ, f ðAiÞ, f ðA0iÞ, f ðAi;jÞ and f ðA0i;jÞ, respectively.

2.3.2. The finite volume scheme

Integrating (9) on CA yields
Z
CA

otqdxþ
Z
CA

divxðquÞdx ¼ 0;
and using the Green formula, we get
Z
CA

otqdxþ
Xnt

i¼1

Z
C�i

qu � n�i dcðxÞ þ
Z

Cþi

qu � nþi dcðxÞ
 !

¼ 0: ð19Þ
The numerical approximation of the density q is based on the following ingredients:

– We define the approximation as to be constant on CA, denoting by qA the value on the volume control;
– Knowing u on the whole domain X, we introduce a auxiliary velocity uH on oCA, which is constant on each

set C�i and Cþi . Namely, we construct uH such that
For any x 2 oCA ¼
[nt

i¼1

ðCþi [ C�i Þ; uHðxÞ ¼
uH�

i on C�i ;

uHþ
i on Cþi :

(
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where the values uH	
i will depend on the original velocity u, see Section 2.4 below. Then, we compute qA by

coming back to (19) which yields
otqA ¼ �
1

jCAj
Xnt

i¼1

ðuH�
i � n�i

Z
C�i

qdcðxÞ þ uHþ
i � nþi

Z
Cþi

qdcðxÞÞ: ð20Þ
Knowing the value qA jt¼nDt ¼ qn
A, we compute the value of qnþ1

A by using a fully explicit second order Run-
ge–Kutta integration scheme. At each step of this integration method, we have to evaluate the right hand side
of (20). Having at hand two interpolation values eqþA and eqþAi

(respectively eq�A and eq�Ai
) for q on Cþi (respectively

C�i ), we set
Z
Cþi

qdcðxÞ ¼
jCþi jeqþAi

if uHþ
i � nþi 6 0;

jCþi jeqþA if uHþ
i � nþi > 0;

(
ð21Þ

Z
C�i

qdcðxÞ ¼
jC�i jeq�Ai

if uH�
i � n�i 6 0;

jC�i jeq�A if uH�
i � n�i > 0:

(
ð22Þ
To be more specific, an order one approximation (with respect to space) is obtained by choosing eqþA ¼ eq�A ¼
qA and eqþAi

¼ eq�Ai
¼ qAi

. The second order accuracy in space can be reached by using a MUSCL technique
[52,53] to increase the order of interpolation. In that case we define C�i (respectively, Cþi ) as the middle of
C�i (respectively, Cþi ), and we use:
eq�A ¼ qA þr�qA � AC�i ; eqþA ¼ qA þrþqA � ACþi ;eq�Ai

¼ qAi
þr�qAi

� AiC
�
i ; eqþAi

¼ qAi
þrþqAi

� AiC
þ
i ;
where r�qA; rþqA, r�qAi
and rþqAi

are evaluated by an averaged value between an upstream and a down-
stream gradient, defined by the so-called b scheme [16] with the choice b ¼ 1=3. More precisely, the gradients
r�qA and rþqA are defined as:
r�qA ¼ brqA þ ð1� bÞr�qA; rþqA ¼ brqA þ ð1� bÞrþqA;
with
rqA ¼
Pnt

j¼1
jMjjðrqÞjMjPnt

j¼1
jMjj

; r�qA ¼ rqjMi�1
; rþqA ¼ rqjMi

:

A similar procedure is used to derive r�qAi
and rþqAi

. A flux limiter is finally added to ensure stable sim-
ulations and to avoid spurious oscillations in the vicinity of the discontinuities (see e.g. [6]).

Remark 1. Since we use an explicit method for evaluating the density, we are faced to the question of using
time and space steps compatible to guaranty the stability of the scheme. This leads to a condition looking like
Dt ¼ Ch, where C is proportional to the inverse of the L1 norm of the velocity.

2.4. Compatibility conditions

2.4.1. Velocities at the interface of the control volume

As explained in Section 2.3.2, the FV scheme needs at each time step of the simulation the determination of
a auxiliary velocity uH, defined on the interfaces of the control volume, from the knowledge of a function u,
defined on the domain X. Our constraint is twofold:

– First, we are concerned with a divergence free velocity field. Accordingly, as said in Section 1, if we start
from a homogeneous density, then, the scheme should produce a homogeneous solution.

– Second, the field u ¼ ðu; vÞ actually comes from a P2 FE approximation. Therefore, it is a piecewise poly-
nomial function which satisfies the divergence free constraint in the following weak sense
Z

X
divxu wA dx ¼ 0; ð23Þ
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where wA is the P1 basis function associated to the node A (common to the triangles M1; . . . ;Mnt). Since u is P2,
we can compute the divergence by involving the values of the function at the points A;Ai;A

0
i, Ai;j and A0i;j: for

1 6 i 6 nt, we get (with the notation of Section 2.3.1)
6

Z
Mi

divxu wA dx ¼ ðyiþ1 � yÞð�uþ u0i þ ui;iþ1 � u0iþ1Þ þ ðy � yiÞð�u� u0i þ ui;iþ1 þ u0iþ1Þ

þ ðx� xiþ1Þð�vþ v0i þ vi;iþ1 � v0iþ1Þ þ ðxi � xÞð�v� v0i þ vi;iþ1 þ v0iþ1Þ: ð24Þ
As a consequence, (23) becomes
6

Z
X

divxu wA dx ¼
Xnt

i¼1

ðyi � yÞðu0i�1 þ ui�1;i � ui;iþ1 � u0iþ1Þ þ
Xnt

i¼1

ðxi � xÞðvi;iþ1 þ v0iþ1 � v0i�1 � vi�1;iÞ ¼ 0:

ð25Þ

It is remarkable that the divergence-free constraint (25) does not involve the value of u at the vertices Ai

themselves ð1 6 i 6 ntÞ, but only in the middle of the edges. Now, let us define the auxiliary velocity uH: com-
ing back to (20) for a homogeneous state, the solution remains constant when uH fulfills the relation
Xnt

i¼1

ðuH�
i � n�i jC�i j þ uHþ

i � nþi jCþi jÞ ¼ 0: ð26Þ
The relation (26) can be written as:
Xnt

i¼1

ðyi � yÞ uHþ
i�1

3
� uHþ

i

6
� uH�

iþ1

3
þ uH�

i

6

� �
þ
Xnt

i¼1

ðxi � xÞ � vHþ
i�1

3
þ vHþ

i

6
þ vH�

iþ1

3
� vH�

i

6

� �
¼ 0: ð27Þ
Therefore, identifying (25) with (27), we arrive at the following necessary and sufficient condition
u0i�1 þ ui�1;i � ui;iþ1 � u0iþ1 ¼ 2uHþ
i�1 � uHþ

i � 2uH�
iþ1 þ uH�

i : ð28Þ
We search for uHþ
i (respectively uH�

i ) as a convex combination of u0i, ui;iþ1, u0iþ1 (respectively u0i, ui�1;i, u0i�1)
and we end up with the following definition of the auxiliary velocity
uHþ
i ¼ 1

3
u0i þ ui;iþ1 þ u0iþ1

� �
ð29Þ

uH�
i ¼ 1

3
u0i�1 þ ui�1;i þ u0i
� �

: ð30Þ
Finally, we also need to associate to the FV approximation of the density a piecewise polynomial approxi-
mation for the FE step. In our approach, the FV method uses a dual mesh and the control volumes, associated
to the vertices of the triangles K 2 T h, are formed from faces of the dual mesh connecting the barycenter of tri-
angles through medians. To be more specific, if the FE is the classical Lagrange conforming linear element where
degrees of freedom are associated to the vertices, for the control volume Ci corresponding to the ith degree of
freedom, we identify:
XM

i¼1

qivCi
¼
XM

i¼1

qiwi
where vCi
ðxÞ ¼ 1 if x 2 Ci, and vCi

ðxÞ ¼ 0 otherwise, wi is the ith basis function of the FE space Qh and
M ¼ dimðQhÞ.

2.4.2. Some remarks

(1) We remark that (29) and (30) imply uHþ
i ¼ uH�

iþ1. However we point out that this velocity does not coincide
with uðA0i;iþ1Þ as it could be evaluated by using the P2 FE nature of u in the triangle. Actually, the formula
for uHþ

i ¼ uH�
iþ1 coincides with a linear 2D interpolation at A0i;iþ1 from velocities known at the nodes A0i, A0iþ1

and Ai;iþ1.
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(2) In the case of a structured mesh (see Fig. 2a), the nodes A0i;iþ1, A0iþ1 and A0iþ1;iþ2 are on the same line
(1 6 i 6 nt). Hence, it is tempting in this specific situation to define a global velocity uH

i constant on
the segment Ci ¼ C�i [ Cþi , by the formula
F

uH

i ¼
jCþi juHþ

i þ jC�i juH�
i

jCij
: ð31Þ
Dealing with general unstructured meshes, it is also possible to define a auxiliary velocity uH which is con-
stant on Ci, but the ponderation coefficients must be defined componentwise
uH

i ¼ uHþ
i

yiþ1 � y þ y
2
� yi

2

yiþ1 � yi�1

� �
þ uH�

i

y � yi�1 � y
2
þ yi

2

yiþ1 � yi�1

� �
;

vH

i ¼ vHþ
i

xiþ1 � xþ x
2
� xi

2

xiþ1 � xi�1

� �
þ vH�

i

x� xi�1 � x
2
þ xi

2

xiþ1 � xi�1

� �
:

The geometrical interpretation of these relations is straightforward. For example on the mesh of the Fig. 1,
with i ¼ 2, we have:
uH

2 ¼
aþy
by

uHþ
2 þ

a�y
by

uH�
2 ;

vH

2 ¼
aþx
bx

vHþ
2 þ a�x

bx

vH�
2 ;
where aþy , a�y , by , aþx , a�x and bx are indicated on the figure. Anyway, our simulations on unstructured meshes
use a variable velocity uH and the definition (29) and (30).

(3) For a structured mesh, the control volume CA can be defined in a different way, as the square ðABR;ATR;ATL;
ABLÞ (see Fig. 2b). In that case, uH can be chosen constant on each of the four parts of oCA ¼ ½ABRATR� [
½ATRATL� [ ½ATLABL� [ ½ABLABR�. We have to define these velocities in order to satisfy the property
uH

R þ vH

T � uH

L � vH

B ¼ 0: ð32Þ

To derive uH

R , we first define the value uH

M1 (resp. uH

M6) as the first component of the velocity at the barycenter
of the triangle M1 (resp. M6) evaluated by uH

M1 ¼ ðuR þ uRR þ uTRÞ=3 (resp. uH

M6 ¼ ðuB þ uBR þ uRÞ=3). Then, we
get
uH

R ¼
1

2
ðuH

M1 þ uH

M6Þ;
and vH

T ; u
H

L and vH

B are evaluated in a similar way. This choice was proved to verify (32) because of (23).
b

ig. 2. Control volume for nt ¼ 6 on structured mesh: (a) the mesh defined in Remark 3; (b) the mesh defined in Remark 3.
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2.4.3. Boundary conditions

A few words deserve to be said about the treatment of the boundary condition for the density by the FV
scheme. Indeed, remind that the physical boundary condition for the mass conservation equation imposes the
incoming flux qujCinc

¼ qincg. Then one needs to define a piecewise constant velocity on the interfaces of the
control volumes belonging to the boundary of the computational domain oXh. Consider a vertex A 2 oXh,
belonging to nt triangles (see Fig. 3 for nt ¼ 2). We denote by uH;bd

1 (respectively uH;bd
ntþ1 ) the velocity on the seg-

ment ½A01A� (respectively, AA0ntþ1). We set nbd
1 (respectively, nbd

ntþ1) the unit outward normal vector on ½A01A�
(respectively, AA0ntþ1). We follow the same discussion as for interior volumes, bearing in mind to preserve
the incompressibility condition.

The question is to determine a velocity on the boundary oCA of the control volume. For all interfaces
belonging to the interior of X, the velocity is derived as explained above; we are only left with the task of dis-
cussing the velocity to be imposed on oCA \ oXh. Formula (24) still applies, but (25) is no more valid since now
A01 6¼ A0ntþ1, with the convention used in Section 2.3.1. We check that
Z

oCAnoXh

uH � n dcðxÞ �
Z

X
divxu wA dx ¼ �jA01Aj 2u01 þ u

3
� nbd

1 � jA
0
ntþ1Aj

2u0ntþ1 þ u

3
� nbd

ntþ1:
Therefore, to guaranty
Z
oCA

uH � ndcðxÞ ¼ 0;
we are led to impose
uH;bd
1 ¼ 2u01 þ u

3
; uH;bd

ntþ1 ¼
2u0ntþ1 þ u

3
:

Finally, for the FV method, we distinguish two cases


 If uH;bd
1 � nbd

1 P 0, the flux is evaluated using the density as computed in the previous time step. According to
the physical boundary condition, we do not need any further data in such a case of outgoing flux.

 If uH;bd

1 � nbd
1 < 0, the flux is evaluated using the density provided by the data qinc.

A similar construction is adopted for nt þ 1 replacing 1.
Fig. 3. Boundary node A on unstructured mesh for nt ¼ 2.
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3. Numerical results

Let us now discuss the numerical results obtained with the hybrid FV–FE method described above. Let us
recall that all simulations use the P2 � P1 FE approximation for computing the velocity and pressure fields,
and the FV method detailed in the previous section for the density. It turns out that the second order scheme,
including slope limiters if necessary, is perfectly appropriate.

3.1. Validation of the scheme

First of all, we validate our numerical strategy. The first requirement is to recover results of usual simula-
tions of the constant density case. Next, we check numerical rate of convergence by comparing to analytical
solutions.

3.1.1. Constant density

In Fig. 4 we show the result of the computation for an initially homogeneous fluid for the standard lid-dri-
ven cavity test, at Re ¼ 5000. We indeed observe that the scheme preserves a constant density, and that the
results for the velocity and the pressure perfectly coincide with computations that use a standard Navier–
Stokes code. Therefore, our method does not introduce spurious variation of density. We also observe that
this coupling does not introduce in this case a degradation of the accuracy.

3.1.2. Analytical solution, rates of convergence

Next, we evaluate the abilities of the scheme to recover analytical solution and we check the rates of con-
vergence. In particular, we shall make a couple of remarks concerning the structure of the mesh that could be
important for the performances of the scheme. We start with the example given in [23] by:
qexðt; x; yÞ ¼ q1ðr; h� sin tÞ;

uexðt; x; yÞ ¼
�y cos t

x cos t

� �
;

pexðt; x; yÞ ¼ sin x sin y sin t;

8>>><>>>: ð33Þ
Isobars, t= 29

0 0.5 1
0

0.5

1

0
50

100

0
50

100
1

1

1

Density contour, t= 29

Vorticity contour, t= 29

0 0.5 1
0

0.5

1
Streamlines, t= 29

0 0.5 1
0

0.5

1

Fig. 4. The lid-driven cavity test with a homogeneous density at initial time: pressure, density, vorticity and streamlines.
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where q1ðr; hÞ ¼ 2þ r cos h and where ðr; hÞ are the usual polar coordinates. The fields qexðt; x; yÞ and uexðt; x; yÞ
satisfy the mass conservation equation (1) identically and uexðt; x; yÞ is solenoidal. The momentum Eq. (2) is
satisfied with the body force defined by
fexðt; x; yÞ ¼
ðy sin t � x cos2 tÞqexðt; x; yÞ þ cos x sin y sin t

�ðx sin t þ y cos2 tÞqexðt; x; yÞ þ sin x cos y sin t

� �
: ð34Þ
The computation has been performed for 0 6 t 6 0:5 either on the square ½�1; 1�2 or on the unit disk
0 6 r 6 1. In the first case, we need to impose the incoming flux for the resolution of the mass conservation
equation according to the discussion in Section 2.4.3. The convergence results are displayed by means of
h ¼ hmax, where hmax is the length of the largest edge of the mesh. As explained above, the time step Dt is pro-
portional to h, see Remark 1. For the velocity and the pressure, the errors are respectively evaluated using the
usual L2ðXÞ norms jju� uhjjL2ðXÞ and jjp � phjjL2ðXÞ. For the density, the error is evaluated with the usual L1ðXÞ
norm, but using a reconstruction procedure similarly to [54]. Having at hand the piecewise constant density
ðqhÞi on each control volume Ci surrounding the node Aiðxi; yiÞ, we define on Ci a piecewise linear density
reconstruction of ðqhÞi by:
ð~qhÞiðx; yÞ ¼ ðqhÞi þ ðrqhÞi �
x� xi

y � yi

� �
;

where ðrqhÞi is a constant gradient on Ci evaluated by a weighted averaged computation from the gradients
available on all the triangles surrounding Ai. The density error is then evaluated by jjq� ~qhjjL1ðXÞ. The com-
putations are performed in five different cases, to underline the influence of the mesh on the accuracy of
the method:

a) The domain is the square which is discretized with a structured mesh, and the control volumes are
defined as for an unstructured mesh (like in Fig. 2a). We obtain a covering of the computational domain
by regular hexahedra;

b) The domain is the square which is discretized with the same structured mesh but where the control vol-
umes are the squares (like in Fig. 2b); the method is described in Remark 3 in Section 2.4.2;

c) The domain is the square which is discretized with a general isotropic unstructured mesh (like in Fig. 1);
d) The domain is the disk which is discretized with an isotropic unstructured mesh with some symmetric

properties (Fig. 5, left);
e) The domain is the disk which is discretized with a general isotropic unstructured mesh (Fig. 5, right).

We plot in Figs. 6 and 7 the error on the velocity, pressure and density for each of these cases. It shows the
maximum error in time evaluated in L2ðXÞ (for velocity and pressure) or L1ðXÞ (for density) norm with respect
Fig. 5. Unstructured meshes for the disk: symmetric one (left) and non-symmetric one (right).
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to space. The lines corresponding to a rate of convergence of order one (slope 1) and order two (slope 2) are
also displayed. The remarkable facts are the following:


 For the cases (a) and (b) (see Fig. 6), we observe the optimal rates of convergence that can be expected from
the method we use: namely order Oðh2Þ for all unknowns. Results obtained for the velocity and the pressure
are nearly identical for the two cases. Note in particular that by construction of the scheme, the error on the
velocity field is limited by the error made on the density. Since the interpolation error for the density is of
order 2, we cannot expect more than order Oðh2Þ on the velocity, except when the density is a linear func-
tion of the space variable (in which case we can indeed obtain the Oðh3Þ error for the velocity at the price of
using Dt ’ h3=2).

 For the case (c) (see Fig. 6 again), the convergence rates remain in Oðh2Þ for the velocity and the pressure,

and we observe a very slight degradation of the rates of convergence for the density (namely Oðh1:80Þ
between the two most refined meshes). It is due to the unstructured topology of the mesh. Indeed, this
phenomenon is typical of FV methods on complex meshes. A large bibliography is devoted to this topic
and the order of convergence of FV methods on unstructured meshes, even for low-order methods and
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linear equations, is still an open problem [14,15,34,35]. We also refer for studies on the effect of mesh geom-
etries on the accuracy of FV methods to [4] and the references therein. What is however remarkable is that
despite this small loss of accuracy on the density, the accuracy on the velocity and the pressure remain
optimal.

 For the cases (d) and (e) (see Fig. 7), the convergence rates remain in Oðh2Þ for the velocity and the pres-

sure, and we observe similarly to case (c) a slight loss of accuracy concerning the density, even if the order
remains very satisfactory and definitely higher than one (namely Oðh1:96Þ for case (d) and Oðh1:62Þ for case
(e)). Once again, it is due to the unstructured topology of the mesh.

 Similar results are obtained by considering more complicated velocity or density fields, for instance having

a polynomial dependence with higher degree with respect to the space variables, so that the exact solutions
do not belong to the approximation spaces anymore.

In conclusion, we see that in the worst configuration (completely unstructured mesh on the disk), the rates
of convergence are equal to Oðh2Þ for the velocity and the pressure and Oðh1:62Þ for the density. The proposed
scheme is so proved to be very accurate. For the best one (structured mesh on the square), these rates are equal
at least to Oðh2Þ for the three variables. This is the configuration chosen for the following numerical test (see
section 3.2).

3.2. Viscous Rayleigh–Taylor instability

In this Section we deal with a physically more interesting problem, namely we investigate a Rayleigh–Tay-
lor instability. The problem has been considered in [5,23,20] starting form the results and comments in [49]
concerning the inviscid case. Of course, for such problem, level set approaches or interface tracking methods
have been shown to be very efficient (see e.g. [40] or [36,17] and the references therein).

The fluid, initially at rest, is subject to gravity. It occupies the domain
X ¼ ð�d=2; d=2Þ � ð�2d; 2dÞ;

which splits into two region with varying density, the heavier fluid superposed to the light one. The interface is
slightly smoothed since we set at time t ¼ 0:
q0ðx; yÞ ¼
qm þ qM

2
þ qM � qm

2
tanh

y � g cosð2px=dÞ
0:01d

� �
;

with qM > qm > 0, and g > 0 the amplitude of the initial perturbation. The difficulty of the problem essentially
depends on:

– the density ratio between the light and the heavy fluid, which is measured by the so-called Atwood number
At ¼ qM � qm

qM þ qm

;

– the Reynolds number, defined as

3=2 1=2
Re ¼ qmd G
l

;

where l > 0 is the dynamic viscosity of the fluid (supposed to be constant in the whole domain) and G is the
gravitational acceleration.

The problem is very tough and it is difficult to distinguish the physical instabilities from instabilities having
a purely numerical origin and which are amplified by the system. It turns out that the simulation are highly
sensitive to

– the mesh orientation which can induce spurious drift velocity,
– the evaluation of the gravity term f ¼ qg, where g ¼ ð0;�GÞ,
– the treatment of the boundary condition.
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Therefore, these points require a specific care to avoid spurious instabilities, which would definitely grow
with time (actually exponentially fast, with a rate depending on the Reynolds number and the wavelength
of the perturbation, according to the analysis in [10]). Let us detail now the devices we use to remedy the
difficulties.


 Mesh orientation: Bearing in mind our results on the convergence rate of explicit solutions for structured and
unstructured meshes, we give advantages to meshes having a lot of symmetries and in particular to structured
meshes as defined in Fig. 2b. Although the control volume is the square, uniform mesh orientations induce
artificial drifts as shown in Figs. 8 and 9. Indeed, these meshes produce small scale perturbations which grow
Fig. 8. Rayleigh–Taylor instability: instabilities due to mesh orientation, Example 1.
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with time, developing artificial drift-velocity near the vertical boundaries. These perturbations on the velocity
field induce two second vortices which roll up on the upper part of the interface, following the orientation of
the mesh (i.e. they spread in the domain in Fig. 8 or live near the boundaries in Fig. 9). To prevent this
phenomena we use a triangular mesh with alternate directions, as shown in Fig. 10. Of course, it would be
possible to use also a fully unstructured mesh which is intended to average these mesh instabilities; it would
also allow the use of mesh refinement strategies. We shall go back to this question elsewhere. Finally, it seems
that structured meshes with alternate directions and with control volumes having a lot of symmetries but
without being a simple square, are slightly more sensitive to develop instabilities. This certainly gives also
advantages to methods based on very regular meshes like finite difference approaches [5,29] which, however,
do not extend easily to complex geometries.
Fig. 9. Rayleigh–Taylor instability: instabilities due to mesh orientation, Example 2.
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 Gravity term: Since we have at hand 3 values of density per element when computing the velocity field, it
would be quite natural to use a P1 interpolation of the density in the elements. This is the definition we adopt
for the left hand side term of the momentum equation. However, for the evaluation of the gravity force, this
choice can be improved having in mind the stable case of two fluids of different densities superposed one over
the other with a flat interface. Indeed, for structured meshes like in Figs. 8–10, the interpolation introduces
an initial sawtooth profile of the density, which then induces unphysical vertical velocities. Of course, this
phenomenon is reduced as the mesh size tends to 0, but this simple example discriminates the P1 interpola-
tion for evaluating the gravity term when dealing with unstable cases. Considering the same example, also a
P0 interpolation of the density, obtained by the average of the three available values on an element, intro-
Fig. 10. Rayleigh–Taylor instability: a performing uniform mesh.
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duces a sawtooth profile of the density. However, other P0 interpolations of the density can be defined in
order to produce a flat interface of the density. Among many different possible strategies, we define the grav-
ity term in a given element by the constant value
Fig. 11
30� 2
q� þ qþ
2

G

where q� and qþ are the extreme values of the density present in the element. We could also use q� or qþ as
the constant value on an element, but this seems to be less stable, in particular as the Atwood number in-
creases, with similar phenomena observed near the vertical boundaries in Figs. 8 and 9.

 Boundary conditions: According to [49,5], the continuous problem is supplemented by no-slip boundary

condition on the horizontal boundaries and periodicity conditions on vertical boundaries. Actually, accord-
ing to [23,20] and to numerical simulations presented in Fig. 10, the solution has symmetries and we com-
pute the solution on the half domain ð0; d=2Þ � ð�2d; 2dÞ with the following boundary conditions for the
velocity field: denoting u ¼ ðu; vÞ, we impose
On the horizontal boundaries : u ¼ 0; v ¼ 0;

On the vertical boundaries : u ¼ 0; oxv ¼ 0:

�

For the density, we note that u � n always vanishes on the boundary so that there is no incoming flux. Then,

we use the treatment described above in Section 2.4.3.
In what follows, the time variable is scaled as t ¼ t0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d=AtG

p
, with t0 dimensionless, according to [49]. We

compare the solutions obtained at different Atwood numbers and for many Reynolds numbers.


 A low Atwood number problem: Setting At ¼ 0:5 (qM ¼ 3, qm ¼ 1), we begin with a low Reynolds case,
Re ¼ 1000. For the initial condition we set g ¼ 0:1. The results displayed in Fig. 11 are qualitatively close
to those in [23,20]. In this case, the calculation is quite indifferent to the choice of mesh orientation and to
the evaluation of the gravity term. We observe that when the Reynolds number increases (see also Fig. 12
for Re ¼ 5000 and 13 for Re ¼ 20; 000), the velocity of the characteristic mushroom shape is the same for all
the Reynolds numbers considered. These qualitative results are in accordance with the analysis in [10], for
which the viscosity plays no role among the interface perturbations with very long wavelengths. The influ-
ence of the increasing Reynolds number appears in the shape of the rising counter-rotating vortices, which
induces many different small structures for t P 2. It is of course difficult to assess the accuracy at large times
. Rayleigh–Taylor instability: evolution of the interface; Re ¼ 1000, density ratio = 3, initial amplitude g ¼ 0:1. Uniform mesh
40, density contours 1:4 6 q 6 1:6.
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and care must be taken that the resolution is sufficiently high. Again, some spurious instabilities seem to
start near the right hand boundary for Re ¼ 20; 000 at t ¼ 2 and obviously they grow with time. A finer
uniform mesh would cure this numerical phenomenon. Finally, comparing our results at Re ¼ 5000 with
those presented in [23,20], there is a satisfactory agreement of the global characteristics of the flow in
the early stage and we can observe some slight discrepancies only at large times of the calculation.

 A high Atwood number problem: Setting At ¼ 0:75 (qM ¼ 7, qm ¼ 1), we consider again two Reynolds num-

bers, Re ¼ 1000 and Re ¼ 5000. For the initial condition, let g ¼ 0:01 be the amplitude of the interface per-
turbation, like in [5,23]. For Re ¼ 1000, the results displayed in Fig. 14 can be compared with those of [23]
and [5]. In this case, more important discrepancies with [23] appear. These discrepancies are first located at
the right hand boundary and they are spread in the domain as time increases. Note that the behavior of the
solution is far more sensitive to the numerical choices that for the low Atwood number, but our calculations
remain qualitatively close to those in [5], especially in the early stage. As said above, it is difficult to assess
the accuracy of the simulations at large times, and the comparison could become irrelevant since our space
grid of resolution is much larger than that one used in [5]. At this high Atwood number, the roll up of the
heavy fluid is less pronounced, compared to those obtained at low Atwood number (see Figs. 11 and 14).
Take care not to compare the evolution of the interface at the same non-dimensional time, because the
amplitude of the initial condition is not the same. As the heavy fluid continues to fall, the shape of the
rolled-up vortex developed in the interior of the head presents less rich structures with respect to those dis-
played in [5]. Finally, comparing the evolution of the interface for Re ¼ 1000 and Re ¼ 5000 (see Figs. 14
and 15), we can confirm that the viscosity plays no role on the velocity of downward motion of the heavy
fluid. Slight discrepancies can be observed on the evolution of the upward motion of the light fluid and
some spurious instabilities appear near the right hand at t ¼ 2:5 and obviously grow with time. Again, a
finer uniform mesh would cure this numerical phenomenon.

 A very high Atwood number problem: Setting At ¼ 0:9 (qM ¼ 19, qm ¼ 1), we consider only a low Reynolds

case, Re ¼ 1000 (see Fig. 16). As the Atwood value increases, the sensitiveness of the calculation to the
numerical instabilities grows. The downward motion of the heavy fluid increases with the density difference
and the solution develops the characteristic mushroom shape later than for the case At ¼ 0:75, without any
structure in the interior of the head. These phenomena are observed comparing Figs. 14 and 16, obtained
with the same mesh and using the same amplitude g ¼ 0:01 of the initial interface perturbation. Moreover
this Atwood dependent behavior was already observed in [49]. Notice that at At ¼ 0:9 it is very difficult to
continue the simulation up to the non-dimensional time t ¼ 3, and it seems that the evolution of the inter-
Fig. 12. Rayleigh–Taylor instability: evolution of the interface; Re ¼ 5000, density ratio = 3, initial amplitude g ¼ 0:1. Uniform mesh
40� 320, density contours 1:4 6 q 6 1:6.



Fig. 13. Rayleigh–Taylor instability: evolution of the interface; Re ¼ 20; 000, density ratio = 3, initial amplitude g ¼ 0:1. Uniform mesh
40� 320, density contours 1:4 6 q 6 1:6.

Fig. 14. Rayleigh–Taylor instability: evolution of the interface; Re ¼ 1000, density ratio = 7, initial amplitude g ¼ 0:01. Uniform mesh
40� 320, density contours 2 6 q 6 4.
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face configuration does not change significantly when using finer grids. The application of a surface tension
model may produce better results on the form of the spike and of the mushroom head at the tip of the spike.
We shall go back to this question elsewhere.

3.3. Falling bubble test

The goal of this test is to investigate the capability of our hybrid method to work with larger density vari-
ations. This simulation is inspired from [41], even if this paper is concerned with the Euler system. A heavy
‘‘droplet” falls through a light fluid and impacts into the plane surface of the heavy fluid in a cavity. The com-
putational domain is ð0; dÞ � ð0; 2dÞ, where d ¼ 1 and at t ¼ 0 the fluid is at rest with density:



Fig. 16. Rayleigh–Taylor instability: evolution of the interface; Re ¼ 1000, density ratio = 19, initial amplitude g ¼ 0:01. Uniform mesh
40� 320, density contours 9 6 q 6 11.

Fig. 15. Rayleigh–Taylor instability: evolution of the interface; Re ¼ 5000, density ratio= 7, initial amplitude g ¼ 0:01. Uniform mesh
50� 400, density contours 2 6 q 6 4.
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qðx; yÞ ¼
100 if 0 6 y 6 1 or 0 6 r 6 0:2;

1 if 1 < y 6 2 or 0:2 < r;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where r ¼ ðx� 0:5Þ2 þ ðy � 1:75Þ2. As in [41], the equations are made dimensionless by using the following
references: qm for density, d for length,

ffiffiffiffiffiffiffiffiffi
d=G

p
for time, so that the reference velocity is

ffiffiffiffiffiffi
dG
p

. In the dimen-
sionless equations, the gravity term is f ¼ ð0;�qÞ and the Reynolds number is defined as in Section 3.2. In
our test, the viscosity of the fluid is supposed to be constant in the whole domain and we have Re ¼ 3132. No
surface tension model is taken into account, then a deformation of the spherical droplet can be observed. In
this case, the difficulty comes from the discontinuous interface and the problem becomes harder as the



Fig. 17. Falling bubble test: evolution of the interface; Re ¼ 3132, density ratio = 100. Uniform mesh 80� 160, density contours
q ¼ ½20; 35; 40; 45; 50; 55; 60; 65; 80�.
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difference between the densities increases (note that in the test of Rayleigh–Taylor instability, the interface
was artificially smoothed). Fig. 17 shows the evolution of density contours q ¼ ½20; 35; 40; 45; 50; 55;
60; 65; 80�, which are qualitatively close to those in [41], obtained with a larger density ratio. After the splash
of the droplet, some areas of lighter density appear within the heavy fluid (in Fig. 17, this corresponds to the
iso-contours q P 65). This is consistent with the results shown in [41] and reference therein, and seems to
correspond to a phenomenon for which some particles of lighter fluid are trapped in the heavy fluid after
the splash. Finally, it is even difficult to conserve the equilibrium solution since vertical velocities are pro-
duced. Of course, the amplitude of these perturbations decreases with the size of the mesh, but it increases
with the Reynolds number and the gradient of density. There is clearly a motivation here for developing mesh
refinement strategies.

4. Conclusion

In this work, a new finite volume–finite element scheme was derived for the resolution of the incompress-
ible Navier–Stokes system with variable density on unstructured meshes. The originality of our approach is,
thanks to a time splitting procedure, to allow the resolution of the mass equation by a finite volume method
and the resolution of the momentum equation associated to the divergence constraint by a finite element
one. A fundamental point lies on the compatibility relation between the finite volume velocity field, which
has to be defined on the interfaces of the control volumes, and the finite element velocity field which is a
continuous elementwise polynomial function. Indeed, the divergence free constraint has to be preserved on
both fields. Several other points were carefully described, like the choice of the control volumes in the par-



4694 C. Calgaro et al. / Journal of Computational Physics 227 (2008) 4671–4696
ticular case of the structured mesh or the boundary conditions treatment for the density, in order to provide
a description as complete as possible. Four numerical tests underlined the capability of the scheme to ensure
relevant simulations. First, the standard lid-driven cavity test with constant density was performed. Then,
the rates of convergence of the method were proved to be in accordance with the theoretical expected ones,
leading so to an accurate solver. The simulation of the viscous Rayleigh–Taylor instability was also inves-
tigated, and a meticulous study of some numerical choices was carried on (in particular concerning the mesh
orientation and the gravity term). We obtained very good results, even for rather high Reynolds and
Atwood numbers compared to the moderately refined meshes used. This robustness property of the scheme
with regards to high density ratios was finally consolidated by the falling bubble test included a completely
discontinuous interface (further simulations and movies are available at the URL http://math.univ-lille1.fr/
~simpaf/gallery.php). In a forthcoming paper, this hybrid scheme will be used for the simulation of a low
Mach number model for which the divergence free condition on the velocity will be replaced by a relation
between the divergence of the velocity and non-linear derivatives of the density, together with the use of an
adaptive mesh refinement strategy.
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Appendix A. Formulations of the Navier–Stokes system

As said in the introduction, the density-dependent Navier–Stokes equation can be written in many different
ways, bearing in mind that each formulation might have some advantages for computational purposes. The
mass conservation naturally reads
otqþ divxðquÞ ¼ 0: ðA:1Þ

But using the incompressibility of the velocity field, it can be rewritten in the non-conservative form
otqþ u � rxq ¼ 0; ðA:2Þ

or in the tricky way
otqþ u � rxqþ
1

2
qdivxu ¼ 0: ðA:3Þ
The interest of the latter formulation is that the L2 norm of the density is naturally conserved, even when
the velocity does not fulfill the incompressibility condition.

Similarly, the momentum equation is derived as
otðquÞ þDivxðqu� uÞ þ rxp � lDxu ¼ f; ðA:4Þ

coupled to
divxðuÞ ¼ 0: ðA:5Þ

It can be rewritten in the following convected form
qðotuþ u � rxuÞ þ rxp � lDxu ¼ f; ðA:6Þ

by using the mass conservation or
ffiffiffi

q
p

otð
ffiffiffi
q
p

uÞ þ qu � rxuþ 1

2
udivxðquÞ þ rxp � lDxu ¼ f; ðA:7Þ
which makes naturally the kinetic energy appear. Finally, the pressure can be obtained as the solution of an
elliptic problem with variable coefficients
divx

1

q
rxp

� �
¼ divx lDxuþ f � u � rxuð Þ: ðA:8Þ

http://math.univ-lille1.fr/~simpaf/gallery.php
http://math.univ-lille1.fr/~simpaf/gallery.php
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We can summarize how these various formulations are used as follows:
Formulation
 Reference
 Methods
(A.3), (A.7)
 [23,20,39]
 FE, projection

Stabilization techniques
(A.3), (A.7), (A.8)
 [20]
 Characteristic based FV

Projection
(A.2), (A.6)
 [39]
 FE

Gauge Uzawa projection
(A.2), (A.6), (A.8)
 [29]
 Finite differences

Local pressure BC
(A.2), (A.6)
 [42,43]
 Characteristic based scheme

Artificial compressibility
(A.2), (A.6)
 [1,5]
 Convection Upwind Algo.

Projection
(A.2), (A.6)
 [36]
 Advection VoF Algo.

Interface tracking, projection
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